

Waterborne Disease Outbreak

- Defined as 2 or more people with similar illness
- Voluntary reporting by local, territorial, tribal, or State health officials
- Test water and patients to verify contaminant
- Estimate # infected, hospitalized, and fatalities

Waterborne Disease Outbreak

- Hard to recognize symptoms
- Symptoms can take days after exposure to a microbial contaminant
- Microbial hard to detect/isolate

 WBDOs are severely underestimated

WBDOs 1999-2000

- 39 outbreaks associated with drinking water were reported by 25 states.
 - one outbreak spanned 10 states (Salmonella Bareilly);
 - caused illness 2,068 persons ;
 - linked to 2 deaths;
 - the microbe or chemical that caused the outbreak identified for 22 of the 39 outbreaks;
 - 20 of the 22 outbreaks associated with pathogens, and 2 were associated with chemical poisoning;

WBDOs 1999-2000, continued

- Of the 17 outbreaks involving acute gastroenteritis of unknown etiology, one was a suspected chemical poisoning, and the remaining 16 were suspected as having an infectious cause.
- 28 of 39 outbreaks were linked to ground water sources; 18 of these 28 ground water outbreaks were associated with private or noncommunity wells that were not regulated by EPA.

FIGURE 1. Number of waterborne-disease outbreaks associated with drinking water, by etiologic agent and month — United States, 1999–2000 (n = 38)*

^{*}One outbreak of Salmonella Bareilly was not included.

Acute gastrointestinal illness of unknown etiology.

WBDOs associated with drinking water, U.S. 2000 (n=24)

Etiologic agent	Number of cases	Type of systems	Deficiency ¹	Source
Norwalk-like virus	147	Ncom	2	Well
Escherichia coli O157:H7	5	Ind	5	River/creek
AGI**	63	Ind	5	Irrigation system
Giardia intestinalis	27	Noom	3	River
AGI ^{††}	19	Com	3	Well
AGI	21	Com	3	Well
AGI	71	Ind	2	Well
AGI§§	2	Ind	2	Well
AGI	3	Ind	2	Well
AGI	3	Ind	2	Well
AGI	4	Ind	2	Well
G. intestinalis	2	Ind	4	Well
Cryptosporidium parvum	5	Com	4	Well
Es. coli O157:H7	4	Ind	5	Irrigation canal
Campylobacter jejuni	15	Ncom	2	Spring
AGI	65	Ncom	2	Well
Norwalk-like virus	86	Ncom	2	Well
G. intestinalis ^{ffl}	12	Noom	2	Well
G. intestinalis	5	Ind	3	Well
G. intestinalis	4	Ind	5	River
Es. coli O157:H7	29	Com	4	Surface water***
Ca. jejuni†††	102	Ind	5	Irrigation water
Norwalk-like virus	123	Noom	3	Wells
Salmonella Bareilly	84	Ind	5898	Municipal/spring§§§

WBDOs by etiologic agent

TABLE 4. Waterborne-disease outbreaks associated with drinking water, by etiologic agent and type States, 1999–2000 (n = 39)

Etiologic agent	Type of water system*							
	Community		Noncommunity		Individual			
	Outbreaks	Cases	Outbreaks	Cases	Outbreaks	Cases		
AGI [†]	6 [§]	57	3	164	8	195		
Giardia intestinalis	0	0	2	39	4	13		
Escherichia coli O157:H7	2	51	0	0	2	9		
Norwalk-like viruses (NLV)	0	0	3	356	0	0		
Salmonella species ¹	1	124	0	0	1	84		
Campylobacter jejuni	0	О	1	15	1	102		
Es. coli O157:H7/Ca. jejuni	0	0	1	781	0	0		
Small round-structured virus	0	0	1	70	0	0		
Cryptosporidium parvum	1	5	0	0	0	0		
Sodium hydroxide	1	2	0	0	0	0		
Nitrate	0	0	0	0	1	1		
Total	11	239	11	1,425	17	404		
Percentage	28.2	11.6	28.2	68.9	43.6	19.5		

WBDOs by type of deficiency

TABLE 5. Waterborne-disease outbreaks associated with drinking water, by type of deficiency and type of water system United States, 1999–2000 (n = 39)

	Type of water system*							
	Community		Noncommunity		Individual		Total	
Type of deficiency [†]	Outbreaks	%	Outbreaks	%	Outbreaks	%	Outbreaks	%
Untreated surface water	0	0	0	0	1	5.9	1	2.6
Untreated groundwater	1	9.0	8		8		17	43.6
Inadequate treatment	5		3		1	5.9	9	23.1
Distribution system	5		0	0	1	5.9	6	15.4
Miscellaneous or unknown	0	0	0	0	6	35.3	6	15.4
Total	11	100.0	11	100.0	17	100.0	39	100.0

FIGURE 5. Number of waterborne-disease outbreaks associated with drinking water, by year and etiologic agent — United States, 1971-2000 (n = 730)*

^{*}The total from previous reports has been corrected from n = 691 to n = 688.

†Acute gastrointestinal illness of unknown etiology.

FIGURE 6. Number of waterborne-disease outbreaks associated with drinking water, by year and type of water system — United States, 1971–2000 (n = 730)*

^{*}The total from previous reports has been corrected from n = 691 to n = 688.

SAFE DRINKING WATER ACT: PROTECTING AMERICA'S PUBLIC HEALTH

Total Coliform Rule

History—1986 Amendments to SDWA

- Proposed Rule: November 3, 1987
- Final Rule: June 29, 1989 [40 CFR Parts 141 and 142]
 - Drinking Water; National Primary Drinking Water Regulations; Total Coliforms (Including Fecal Coliforms and E. Coli); Final Rule
- Currently being reviewed by EPA

Total Coliform Rule (TCR)

- Applies to all regulated public water supplies
- Targets commonly occurring microbial contaminants that may cause acute health effects
- Use coliform as an "indicator" since we can't test for all known microbials

Types of Microbial Pathogens

- Bacteria
 - Single-Celled Organisms
 - Cholera, *E.coli* 0157:H7
- Viruses
 - Protein-Packaged DNA or RNA
 - Norwalk, Rotavirus
- Protozoa
 - Single-Celled Organisms
 - Giardia, Cryptosporidium

Why We Use Indicators

- We Use Indicator Organisms
 - Indicate Potential Presence of Disease-Causing Organisms
- Why?
 - There are Hundreds of Pathogens...
 - Many Cannot be Detected by Existing Tests
 - Others Require Specific Tests Resources

Indicator Organisms

 Must Survive In All Types of Water (Surface and Ground)

 Should Be Present When Pathogens Are Present

Should Be More Hardy Than Pathogens

Indicator Organisms cont.

- Should Be Absent In Pathogen-Free Water
- Detection Should Be Easy And Affordable
- Obtain results in a timely manner (48 to 72 hours)

Total Coliform as an Indicator

- Advantages:
 - Total Coliform is a General Indicator of a Breach in Water System Integrity
 - Analytical Methods are Simple and Affordable
 - Results available in 48 hours

Total Coliform as an Indicator

• Limitations:

 Total Coliform May Grow in Distribution Systems (Biofilm)

 Total Coliform / Fecal Coliform Do Not Indicate all Kinds of Contamination (e.g., Cryptosporidium, Giardia lamblia)

Total Coliform as an Indicator

- Limitations Example:
 - 1993 Milwaukee, WI, Cryptosporidium waterborne disease outbreak
 - System did not have coliform positive samples, but Cryptosporidium present in water
 - Over 400,000 ill
 - Over 50 deaths

Fecal Coliform Bacteria— Traditional Definition

- Total Coliform Bacteria
 That:
 - Ferment Lactose at an Elevated Temperature When Using Standard (FC) Media
 - 44.5 +/- 0.2 C (Body Temperature)
- Fecal indicator
- Short-Lived outside host

Escherichia coli

E. coli is a fecal coliform

 May be a better indicator of sewage or fecal ccontamination than fecal coliform

Method is good, reliable, and timely

Escherichia coli

- Hundreds of Strains
 Known
- Most Strains Are
 Harmless and Live in
 the Intestines of
 Healthy Humans and
 Animals
- Strain O157:H7
 - Produces a Powerful Toxin
 - Causes Bloody Diarrhea and Occasionally Leads to Kidney Failure

E. coli 0157:H7

- Sources of Outbreaks
 - Undercooked Beef, Dairy Products, Raw Vegetables, Drinking Water
- Symptoms
 - Occur in 1-9 Days (3 Average); Recover in
 8 Days
 - Watery Diarrhea With Abdominal Pain/ Bloody Diarrhea; Little or No Fever
 - Some Develop Haemolytic Uremic Syndrome (HUS)
 - Kidney Failure May Occur, Some Cases are Fatal

E. coli O157:H7 New York Fair Outbreak

- Waterborne disease outbreak
- Sept 1999
- 1,000 people affected
- 760 hospitalized
- 2 deaths (3-yr old and 79-yr old)
- Cause: Cattle manure or nearby septic tank impacted shallow well, no chlorination

TCR Update

- EPA is reviewing TCR- could see some changes
- Distribution Rule being considered
 - A number of waterborne disease outbreaks (WBDO) attributed to the distribution system
 - Estimated 25% of WBDO 1991-2000 due to distribution system deficiencies

Distribution Concerns

- Backflow/Backsiphonage
 - Cross Connection Control
- Physical openings for contaminant entry
 - Holes in storage tanks
 - Broken pipes

Distribution Concerns

Leaching, Permeation, Biofilms

Looking for better indicators for problems

WBDO- Gideon, Missouri

- Gideon, Missouri
- 1993
- Holes in storage tank, birds accessed tank interior
- Bird droppings contained
 Salmonella
- 625 people ill, 15 people hospitalized, 7 deaths

WBDO- Cabool, Missouri

- Cabool, Missouri
- 1989-90
- Main rupture due to cold weather, water line contaminated with sewage that entered during wet weather, hypochlorination not practiced during repair
- E. coli O157 found
- 243 people ill, 32 people hospitalized, 4 deaths

Ground Water Rule

Ground Water Rule

- Proposed May 10, 2000
- Finalized October 2006
- Prompted by deaths associated with unchlorinated well used at New York State Fair- E. coli outbreak and deaths

Ground Water Rule (GWR) Background

- GWR passed to address pathogens in ground water
- Some pathogens can
 - Live for long periods outside its host (years) (viruses in particular)
 - Survive in deep aquifers (200 feet)
 - Travel ¼ mile (or more?)
 - And still cause infection

Ground Water Rule (GWR) Background

- New York State fair WBDO
- Island Park, Idaho, 1996 WBDO
 - Broken sewer main contaminated a well
 - Shigella outbreak
 - 83 people ill
- GWR documents many other WBDOs

Ground Water Rule

- Sanitary surveys
- Source water monitoring for coliform positive samples from routine TCR monitoring
- Assessment monitoring for high risk systems (State option)
- Corrective action for significant sanitary deficiencies or fecal contamination

Sanitary Surveys

- Frequency: Every 3 years for CWS and 5 years for NCWS
- Key components:
 - State must address 8 EPA/ASDWA components
 - States must have corrective action authority
 - Systems must fix significant deficiencies
 - 90 days or alternate schedule
 - Treat if uncorrected
 - Systems must provide written certification that correction was completed

Sanitary Surveys – Eight Essential Elements

- 1. Source
- 2. Treatment
- 3. Distribution System
- 4. Finished Water Storage

Sanitary Surveys – Eight Essential Elements (Cont'd)

- 5. Pumps/Pump Facilities and Controls
- 6. Monitoring/Reporting/Data Verification
- 7. Water System Management/Operations
- 8. Operator Compliance with State Requirements

Source Water Monitoring

- Key components:
 - If TC-positive, then collect samples at the source unless shown to be distribution specific
 - If fecal contamination detected
 - Eliminate source of contamination
 - Develop alternate source
 - 4 logs of virus inactivation/removal

What is Microbial Inactivation?

- Render the Organism Unable to Cause Disease
 - Kill the organism
 - Prevent organism from replicating by disrupting DNA
- Viruses are pathogen of concern for ground water systems
- Crypto and Giardia present in surface water

Factors Affecting Microbial Inactivation

- Organism Disinfectant Resistance
- Disinfectant Concentration
- Contact Time
- Competing/Shielding of Other Particles
- Water Temperature
- Water pH

Types of Disinfectants

- Chlorine
- Chloramines
 - chlorine and ammonia
- Chlorine Dioxide
 - ClO₂ gas generated on-site
- Ozone
 - O₃ gas generated on-site
- UV Light

Quantifying Microbial Inactivation

- Log Inactivation
 - Log₁₀
 - Organism and disinfectant specific
- CT Concept
 - C = chlorine residual concentration
 - T = contact time, function of basin/pipeline size, baffling, and hydraulics

CT (min-mg/L) Values for 4-log Virus Inactivation by Free Chlorine

Temperature	рН	рН
Celsius	6-9	10
0.5	12	90
5	8	60
10	6	45
15	4	30
20	3	22
25	2	15

UV Dose (mJ/cm²) from LT2ESWTR

Log Credit	Crypto- sporidium	Giardia	Viruses
0.5	1.6	1.5	39
1.0	2.5	2.1	58
1.5	3.9	3.0	79
2.0	5.8	5.2	100
2.5	8.5	7.7	121
3.0	12	11	143
3.5	15	15	163
4.0	22	22	186

Other Health Effects – organic and inorganic

 DBPs – cause bladder cancer and reproductive effects

- Stage 1 140 million people receiving increased protection from DBPs
- Lead damage to brain, red blood cells and kidneys, esp. children and pregnant women

Other Health Effects – organic and inorganic

 Copper – stomach and intestinal distress, liver/kidney damage

Arsenic – bladder and lung cancer

 Other chems in general - nervous system, liver, kidneys, cancer, intestinal problems, bone disease

Summary

- Many microbials present in the environment
- TCR good indicator, but has limitations
- Ground Water Rule attempts to address viruses in ground water supplies
- Systems still vulnerable to contamination
- Look for TCR revisions and Distribution Rule